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Representing and understanding the three-dimensional (3D) structural information of protein-
ligand complexes is a critical step in the rational drug discovery process. Traditional analysis
methods are proving inadequate and inefficient in dealing with the massive amount of structural
information being generated from X-ray crystallography, NMR, and in silico approaches such
as structure-based docking experiments. Here, we present SIFt (structural interaction
fingerprint), a novel method for representing and analyzing 3D protein-ligand binding
interactions. Key to this approach is the generation of an interaction fingerprint that translates
3D structural binding information from a protein-ligand complex into a one-dimensional binary
string. Each fingerprint represents the “structural interaction profile” of the complex that can
be used to organize, analyze, and visualize the rich amount of information encoded in ligand-
receptor complexes and also to assist database mining. We have applied SIFt to tackle three
common tasks in structure-based drug design. The first involved the analysis and organization
of a typical set of results generated from a docking study. Using SIFt, docking poses with similar
binding modes were identified, clustered, and subsequently compared with conventional scoring
function information. A second application of SIFt was to analyze ∼90 known X-ray crystal
structures of protein kinase-inhibitor complexes obtained from the Protein Databank. Using
SIFt, we were able to organize the structures and reveal striking similarities and diversity
between their small molecule binding interactions. Finally, we have shown how SIFt can be
used as an effective molecular filter during the virtual chemical library screening process to
select molecules with desirable binding mode(s) and/or desirable interaction patterns with the
protein target. In summary, SIFt shows promise to fully leverage the wealth of information
being generated in rational drug design.

Introduction
The past decade has witnessed an explosion in the

number of three-dimensional (3D) protein-small mol-
ecule structures from experimental as well as in silico
approaches. At the time this paper was being prepared,
the total number of structures deposited into Protein
Data Bank (PDB) had exceeded 22 000,1 with a signifi-
cant fraction representing protein-small molecule com-
plexes (Battistuz, T. Personal communication). Many
more structures are expected to remain undisclosed due
to proprietary interests. With the recent development
of high-throughput X-ray crystallography, the total
number of structures will grow at an even greater
speed.2 In parallel to the growth of experimentally
determined structures, a plethora of structural informa-
tion is also being generated in the rational drug
discovery process. A typical virtual chemical library
screen could generate a library of structures containing
thousands to millions of small molecules docked onto a
target protein in silico.3

A detailed understanding of intermolecular interac-
tions between proteins and their ligands is of critical
importance to structure-based drug design. Tradition-
ally, the interactions between proteins and ligands are
rationalized and compared by visually inspecting indi-
vidual structures on a graphics workstation, sometimes

aided by other software tools that generate two-
dimensional (2D) schematic representations of the
interactions such as LIGPLOT.4 This traditional ap-
proach becomes intractable when the number of com-
plexes to be analyzed is very large, as is the case of the
results generated from virtual library screening.

Effective analysis and mining of these virtual struc-
tural libraries become a daunting task, as it is impos-
sible to inspect them individually. The large amount of
complex structural information requires a new method
to help us better analyze the binding interactions
between proteins and ligands. Ideally, such a new
method should be able to facilitate the following tasks:
(i) data visualization, to allow easy interpretation of the
binding interactions; (ii) data organization, to organize
and cluster the structures in a meaningful way; (iii) data
analysis, to enable the comparison and profiling of the
binding interactions in different structures; and (iv) data
mining, to help search for structures that contain key
interactions or specific features. In addition, it is desir-
able that this method be simple and generic. Here, we
present SIFt (structural interaction fingerprint),5 a
simple and robust method for representing and analyz-
ing 3D protein-ligand interactions. Underlying our
method is the generation of an interaction fingerprint
that converts 3D structural binding information into a
one-dimensional (1D) binary string. The representation
of the interactions as fingerprints enables clustering,
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filtering, and profiling of libraries of compounds using
approaches that are being widely employed in the field
of chemical diversity. We have successfully applied SIFt
to analyze large libraries of docking results as well as
the crystal structures of the protein kinase family bound
to a series of inhibitors.

Materials and Methods

1. Selection of Protein-Ligand Complex Structures.
We generated two sets of molecular docking results and used
them in our studies. The first set was based upon the crystal
structure of p38 in complex with a pyridinyl imidazole inhibitor
SB203580 (PDB accession code: 1a9u).6 The docking program
FlexX7 in Sybyl8 was used to dock SB203580 onto the crystal
structure of p38. In this single ligand study, 100 poses of
SB203580 generated by FlexX were retained for subsequent
analyses. The ligand binding site was defined using a cutoff
radius of 12 Å from the SB203580 ligand (i.e., the conformation
in the crystal structure) combined with a core subpocket cutoff
distance of 4 Å. The FlexX scoring function was used for
scoring the docking. For each ligand being studied, Chem-
Score,9 Gscore,10 PMF Score,11 Dscore,12 and Consensus Score13

were evaluated using the Cscore utility in Sybyl. Consensus
scoring attempts to overcome the limitations inherent in any
single scoring function by tallying the number of times a ligand
was predicted to bind with an enthalpy above a predetermined
cutoff threshold across a set of multiple scoring functions. In
effect, each function casts a vote as to whether the ligand is a
“good” binder, with the Cscore value representing the total
number of votes obtained by the ligand. The scoring functions
used to derive the consensus score were GScore, PMF Score,
DScore, ChemScore, and Fscore7 as implemented in Sybyl. For
each function, a ligand scoring in the upper half of the range
of the scores obtained over all ligands was considered to have
met the CScore cutoff threshold. Figure 1a shows the 100 poses
generated in this experiment. They adopt different orientations
and positions in the ATP binding site of the kinase.

The second docking experiment was designed to evaluate
the database enrichment potential of SIFt by docking a diverse
set of compounds spiked with known actives onto the same
target protein structure. To this end, 16 known p38 inhibitors
were combined with 1000 small molecules with diverse chemi-
cal structures compiled internally. These inhibitors are py-
ridinylimidazoles and analogues, covering several major p38
inhibitor families reported thus far, as previously discussed
by Adams and Lee14 (also see Supporting Information). These
1016 compounds were docked onto the p38 structure (1a9u)
using FlexX distributed across 50 dual processor nodes of a
Linux computing farm. For each ligand, 30 different poses
generated from the docking experiment were retained, gen-
erating a library of 30 480 (30 × 1016) docked ligand structures
for subsequent interaction fingerprints analysis. The perfor-
mance of database enrichment was measured by the enrich-
ment factor (EF),15 calculated based on the ability of recovering
14 out of 16 (87.5%) known inhibitors. In both docking
experiments, 3D conformers of the ligands were generated
using OMEGA.16

In addition to the virtual structures generated from docking
experiments, we also applied SIFt to analyze a family of
experimentally determined structures. A panel of 89 X-ray
crystal structures of protein kinase-ligand complexes was
selected from the PDB.1 The selection criteria included the
following: (i) the structures must contain ligands (either ATP,
GTP, or other inhibitors) present in their ATP binding pockets;
and (ii) most of the ATP binding site residues are visible and
present in the crystal structures. These 89 protein kinase-
inhibitor complexes comprise 25 different kinases, covering 14
different protein kinase subfamilies as classified by Hanks and
Quinn.17,18 In all, the kinase structures contain 54 unique
compounds representing a variety of chemical structures (see
Supporting Information).

2. Construction of Interaction Fingerprints. 2.1. Iden-
tification of Ligand Binding Site Residues. The first step

in the construction of interaction fingerprints is to identify a
list of binding site residues that are common in all complex
structures being studied. Here, the ligand binding site is
defined as the union of all of the residues that are in contact
with any ligand molecules in any of the structures in the group.
The resulting panel of ligand binding site residues, which act
as a mask covering all of the interactions occurring between
the protein and the ligands, is then used as the common
reference frame to construct the interactions fingerprints.

The program AREAIMOL19 of the CCP4 suites20 was used
to identify the protein atoms that are involved in the nonco-
valent intermolecular interactions with the ligands. AR-
EAIMOL evaluates the solvent accessible area utilizing a probe
sphere of 1.4 Å rolling over the van der Waals surface of the
protein and the protein-ligand complex. For simplicity, solvent
molecules in the PDB files were excluded in our study,
although in theory well-ordered solvent molecules can also be
included and treated in the same way as protein residues. The
ligand binding atoms were identified as nonhydrogen protein
atoms exhibiting any solvent accessibility loss upon ligand
binding, with the constraint that they are within 4.5 Å from
any of the nonhydrogen atoms of that ligand.

In addition, we identified the protein atoms that were
involved in hydrogen-bonding interactions with the ligands,
using the program HBPLUS21 with default settings. The
program calculated and listed all possible hydrogen bond donor
and acceptor pairs in the structure that satisfy predefined
geometric criteria. The hydrogen-bonding pairs between pro-
tein and ligand were extracted for subsequent analysis.

For a group of structures involving the same target protein
(e.g., docking results), the ligand binding site is defined as the
list of residues comprising the union of all residues involved
in ligand binding over the entire library of structures. For the
protein kinase-ligand complex structures, however, as the
target proteins involved are different, additional structural and
sequence prealignment steps were required.

The crystal structure of murine PKA in complex with ATP
and a peptidic inhibitor PKI (PDB accession number: 1ATP)22

was used as the reference model for sequence and structural
alignment. Initial amino acid sequence alignment of the
catalytic cores of these kinases was taken from the Protein
Kinase Resource (PKR).18,23 We only focused on a smaller
region of the catalytic cores spanning from the Gly rich loop
to the catalytic region,30,31 as we observed that in all structures,
almost all of the binding interactions between the protein
kinases and the ligands occurred within this region. We then
superimposed each protein kinase crystal structure onto 1ATP,
using the Homology module in Insight II.24 The structural
alignment was focused primarily on the immediate vicinity of
the ATP binding sites. On the basis of the structural alignment
results, sequence alignments were carefully checked to make
sure that all structurally equivalent residues matched each
other in the sequence alignment. The final multiple sequence
alignment result was essentially the same as the initial Hanks
and Quinn alignment taken from the PKR.18

After the alignments, the residues of the nonmurine PKA
protein kinases were renumbered and tallied to the murine
PKA residue numbering system, resulting in a uniform residue
numbering system for all kinases analyzed. Identification of
the list of ligand binding sites was carried out as previously
described using the new PKA equivalent residue numbers.

2.2. Extraction and Classification of Binding Interac-
tions. After all of the ligand binding site residues were
identified and all of the protein-ligand intermolecular interac-
tions were calculated, the next step was to classify these
interactions. Seven different types of interactions occurring
at each binding residue were extracted and classified from the
AREAIMOL and HBPLUS results. They include the follow-
ing: (i) whether it is in contact with the ligand; (ii) whether
any main chain atom is involved in the contact; (iii) whether
any side chain atom is involved in the binding; (iv) whether a
polar interaction is involved; (v) whether a nonpolar interac-
tion is involved; (vi) whether the residue provides hydrogen
bond acceptor(s); and (vii) whether it provides hydrogen bond
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Figure 1. (a) Overlay of 100 different docking poses of SB203580 (shown in cyan stick models) in the vicinity of the target
protein human p38 (PDB accession code: 1a9u). p38 is shown as a ribbon model, and the colors represent different subregions of
the 34 ligand binding site residues: red, Gly rich loop; green, segment from â3 to â4 (including RC); blue, â5 and hinge region;
purple, catalytic loop; yellow, Mg loop; and orange, activation segment. The definitions of the subregions in protein kinase structures
are described previously.30,31 (b) Hierarchical clustering of the SIFts of 100 SB203580 docking poses. Each SIFt is represented as
one line in the heat map in the middle of the figure, and only ON-bits (1) are shown as red blocks. The right side of the heat map
shows the hierarchical clustering results on the fingerprints, including the dendrogram and the reorganized distance matrix.
Colors in the distance matrix correspond to the actual pairwise distance between two SIFts, with dark red being the most similar
and dark blue being the least similar. SIFts in the heat map are rearranged according to the order given by hierarchical clustering.
The seven major clusters (labeled 1-7) identified from the dendrogram are marked on the left side of the SIFt heat map. The
three lines of blocks above the heat map indicate the locations of the corresponding binding site residues and the bits. In the
middle line (alternating in blue and pink), each block represents a particular binding site residue, arranged in ascending residue
numbers. Within each residue, there are seven different binding bits, represented by seven smaller blocks with different colors
in the third line. Also, the residues are grouped into six different regions as described in panel a, as indicated in the first line.
Several key residues that make conserved contact interactions with the inhibitors are labeled. (c-i) Overlay of the poses within
each of the seven clusters (labeled 1-7), in the same reference frame as panel a. The crystal structure of SB203580 in the 1a9u
structure is shown in each figure colored by atom type. Among the 34 binding site residues, only those in contact with the ligands
within the respective cluster are colored, using the same color scheme as in panel a.
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donor(s). By doing so, each residue was represented by a seven
bit long bit string. The whole interaction fingerprint of the
complex was finally constructed by sequentially concatenating
the binding bit string of each binding site residue together,
according to ascendant residue number order. Therefore,
interaction fingerprints are of the same length and each bit
in the fingerprint represents the presence or absence of a
particular interaction at a particular binding site.

3. Analysis of SIFts. 3.1. Measurements of Similarity
of Interaction Fingerprints. We have used the Tanimoto
coefficient (Tc)25 as the quantitative measure of bit string
similarity. The Tc between two bit strings A and B is defined
as:

where |A ∩ B| is the number of ON bits common in both A
and B and |A ∪ B| is the number of ON bits present in either
A or B. Tanimoto coefficients between random bit strings with
a length of 400 bits adopt a near-Gaussian distribution
centered at approximately 0.33, with a sigma of about 0.03
(Deng, Z. Unpublished data).

3.2. Hierarchical Clustering of Interaction Finger-
prints. Because the interaction fingerprint represents the
binding mode of a ligand to a target protein, similar finger-
prints imply that the corresponding ligands make similar
interactions with the protein. We applied a hierarchical
clustering methodology to analyze the fingerprints for each
test case. Interaction fingerprints were clustered by using an
agglomerative hierarchical clustering approach,26 applying the
Tanimoto coefficients as similarity measurements. Clusters of
protein-ligand complex structures were manually selected
based on the dendrogram of their interaction fingerprints.
Hierarchical clustering analyses were carried out with MAT-
LAB,27 and all bit string-related computation steps were
implemented with the Bit::Vector Perl module28 in order to
achieve fast performance. For more detailed information about
the classification of protein kinase structures as well as the
16 known p38 inhibitors used in the database enrichment
experiment, see the Supporting Information section.

Results
1. SIFt-Based Analysis of Docking Results. We

applied SIFt to analyze the result of a typical docking
study. This was comprised of 100 docking poses of a
small molecule inhibitor (SB203580) of p38, for which
the crystal structure was known (PDB entry 1a9u).6 The
poses adopted diverse binding modes, varied in their
orientations and positions relative to the target protein,
and were complex to interpret visually (Figure 1a).

A total of 34 protein residues in the vicinity of the
ATP binding pocket were identified as the ligand
binding site (Figure 1a). These binding site residues are
located in different subregions of the kinase structure.
Interaction fingerprints were generated for all com-
plexes, each of which was composed of 238 (7 × 34)
binary bits. The hierarchical clustering result of these
fingerprints is shown in Figure 1b with the fingerprint
Tanimoto similarity matrix represented as a heat map.
The dendrogram revealed seven major clusters, labeled
1-7, respectively. Figure 1b shows that the clustering
by their SIFt patterns has separated the poses into
different groups with distinct binding interactions.
Figure 1c-i depicts the structures of each major cluster,
put in the same reference frame. Interestingly, each of
these seven clusters is comprised of poses having similar
binding modes with the receptor; cluster 1 contains
molecules similar to the known X-ray crystal structure.
Clusters 2-5 are similar in position but represent
distinct binding modes that result in dissimilar interac-

tions with the Gly rich loop and the catalytic loop of
p38. Finally, clusters 6 and 7 are outside the ATP
binding site. Reassuringly, the degree of variation
between clusters observed visually in their binding
interactions appears to correlate to their distance in the
dendrogram. For example, groups 1, 4, 6, and 7 each
show very little structural variation, as represented by
tight clusters in the dendrogram, whereas groups 3 and
5 show relatively more diversity in their structures as
well as in their fingerprints. Furthermore, clusters 1
and 7 have very little in common and are farthest from
each other in the dendrogram. In summary, visual
inspection confirms that SIFt is useful in separating
docking poses into distinct clusters that reveal distinct
binding interactions. For more details about the bit
values of the SIFt patterns of these seven clusters, see
the Supporting Information.

Traditionally, various scoring functions have been
used to rank poses from docking studies. Scoring func-
tion scores provide an estimate of the binding strength
of the compounds in order to identify the potential “good
binders” from a large pool of poses, such that a selection
of top-scoring compounds derived from a rank ordered
list of docked ligands will be enriched with active
compounds.29 We explored how useful scoring functions
were at discriminating the poses in the different SIFt
clusters (i.e., different binding modes). In Figure 2a, the
first SIFt cluster, which is the closest to the true binding
conformation, shows a wide range in PMF scores,
spanning from the best score (-70) to the worst (-4).
In fact, the majority of the poses in this cluster are no
better in their PMF scores than those in other SIFt
clusters. In addition, the PMF scores for SIFt cluster 2
are just as good as those for cluster 1, even though they
adopt different, crystallographically unobserved, inter-
actions with the receptor. Other different clusters also
overlap with each other in their docking scores. Clearly,
PMF score is a poor scoring function for discriminating
compounds with true binding mode and irrelevant poses
in our experiment. In an attempt to broaden our
analysis of scoring functions, we also examined the
consensus scoring function that consists of five com-
monly used scoring functions (Figure 2b). Many of the
poses in clusters 1-3 had high Cscores (3-5), while
clusters 3-7 overlap significantly in the range of 0-2.
This example further demonstrates the fact that across
a range of scoring functions, the energy-based ap-
proaches alone were insufficient in distinguishing dif-
ferent binding modes and in isolating those poses
corresponding to the observed binding mode.

2. SIFt-Based Analysis of Kinase-Ligand Com-
plex Crystal Structures. We extended the application
of the SIFt method to other ensembles of structures
involving different proteins and a diverse set of small
molecules. We chose 89 known crystal structures of the
protein kinase family that had been deposited in the
Protein Databank. They represent 14 different protein
kinase subfamilies17,18 and 54 unique kinase small
molecule ligands/inhibitors (see Supporting Informa-
tion). The structure and sequence homology among
protein kinases enabled us to analyze these structures
using the SIFt-based approach.

A total of 56 residues were identified as the ligand
binding site. These residues include (in PKA number-

Tc(A,B) ) |A ∩ B|/|A ∪ B|
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ing): 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 70, 71,
72, 74, 83, 84, 87, 90, 91, 94, 95, 98, 103, 104, 106, 118,
119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 132, 157, 162, 163, 164, 165, 166, 168, 170, 171,
173, 182, 183, 184, 185, 186, and 187. The heat map
and the results from hierarchical clustering are shown
in Figure 3a. These interaction fingerprints are diverse,
reflecting a high degree of variability in their binding
interactions. Nevertheless, from the dendrogram, three
major clusters can be identified (Figure 3a; also see
Supporting Information). Although the results indicate
that within each cluster there exists considerable varia-
tion in their interaction patterns, these three groups
represent three distinct binding modes, as confirmed by
careful inspections of their structures (Figure 3b). The
first cluster has four members, containing structures
of human p38 in complex with four different pyridinyl

imidazole inhibitors: SB203580, SB216995, SB220025,
and SB218655.6 The second cluster has 16 members,
mostly human CDK2 in complex with different com-
pounds with diverse chemical properties. The third
cluster, which does not have a clear-cut boundary, is
comprised of approximately 36 structures, and almost
all of them are structures of different kinases in complex
with ATP or ATP analogue inhibitors (GTP, AMPPNP,
AMPPCP, AMP, ADP, etc.). Besides these three major
clusters, about one-third of the 89 structures are either
singletons or form tiny clusters. Interestingly, the three
major clusters represent different grouping examples
of protein-ligand complexessthe first one is made up
of the same protein and chemically similar compounds;
the second group contains the same protein but with a
variety of ligands; the third cluster contains different
proteins in complex with chemically similar ligands.

Comparison of these fingerprints also revealed inter-
actions that are conserved or highly variable among the
structures. For instance, contact interactions with resi-
due 57 (in PKA numbering, within the Gly rich loop)
and residue 70 (also in PKA numbering) are strictly
conserved among all of the 89 protein kinase-ligand
structures. Other highly conserved interactions include
contacts with residues 49, 72, 120, 121, 123, 173, 184,
etc. (Figure 3a). In contrast, many other interactions
are not conserved or only conserved within a particular
group. Detailed and systematic comparison of these
structural profiles of the ATP binding sites of protein
kinases will be presented elsewhere (Deng, Z.; et al.
Manuscript in preparation).

3. Data Mining Using SIFt. Our SIFt-based method
provides a new and powerful tool for lead discovery and
lead optimization, enabling the search for molecules in
a chemical database on the basis of expected interaction
patterns to a target molecule. To test this application,
we performed a virtual screen for a set of 16 known p38
inhibitors spiked into a diverse library of 1000 com-
mercially available compounds. These p38 inhibitors
were all ATP competitive inhibitors, and despite rep-
resenting varied chemical templates, had similarities
to the pyridinylimidazole series (i.e., SB203580-like)14

for which the crystal structure of the complex was
known (1a9u).

These inhibitors and the random collection of chemi-
cal compounds were docked using FlexX onto the crystal
structure of p38 (1a9u), and we assessed how well these
known inhibitors could be enriched using commonly
used scoring functions. These were then compared with
the results from a SIFt-based enrichment involving
filtering of the compounds based on their similarities
in interaction patterns (measured by Tanimoto coef-
ficient) to SB203580, a known pyridinylimidazole in-
hibitor of p38 for which the X-ray crystal structure was
known. The rationale for SIFt-based enrichment is that
these 16 known inhibitors, being diverse analogues of
the pyridinylimidazole series, are expected to bind to
p38 with similar overall binding modes.

Figure 4a,b and Table 1 show the comparison of the
database enrichment performances of the scoring func-
tions with SIFt. ChemScore gave a modest EF of 5.4,
and we had to harvest 166 compounds in order to
identify 14 of the 16 known p38 inhibitors. PMF was
slightly worse than ChemScore, with an EF of 2.0. In

Figure 2. (a) PMF scores as a function of SIFt cluster
number. (b) The Consensus score as a function of SIFt cluster
number.
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addition, an analysis of the binding modes of the poses
of the enriched p38 inhibitors identified using these
scoring functions showed that some of them were highly
variable to the known crystal structure of SB203580,
despite similarities in functionalities, suggesting that
their binding modes obtained by ChemScore or PMF
score were incorrect. This implies that the scoring
functions were probably performing worse than the EFs
were indicating. In contrast, SIFt did pretty well, having
to harvest only 24 compounds to be able to identify 14
of the 16 inhibitors, giving an enrichment factor of 37.0.
Reassuringly, the highest scoring compound recovered
by SIFt was SB203580 upon which the interaction
fingerprint used to probe the database was based. Visual
inspection of the binding modes of the p38 inhibitors
identified using SIFt showed that all of their binding
modes were similar to that of SB203580. A combination

of SIFt and ChemScore led to a modest increase in
enrichment (EF ) 42.3).

Discussion and Conclusion

Our results demonstrate that SIFt is a powerful new
tool for the visualization, organization, analysis, and
data mining of the massive amount of structural infor-
mation being generated by rational drug design projects.
Importantly, it has the potential to significantly reduce
the time-consuming user intervention steps currently
performed in the analysis of protein-inhibitor complex
information.

Virtual chemical library screening is becoming a
viable complementary approach to the traditional high-
throughput screening for the discovery of novel leads.32

The virtual screening process generates a huge number
of virtual structures, which are very difficult to organize

Figure 3. (a) Hierarchical clustering of SIFts of 89 protein kinase crystal structures. On the right are the dendrogram and the
corresponding distance matrix map. SIFts are reorganized according to the order given by the dendrogram. Six different regions
are labeled above the SIFt heat map. Three major clusters (1-3) are labeled on the left side of the heat map. (b) Comparison of
the binding modes of three different kinase clusters (left, cluster 1; middle, cluster 2; right, cluster 3). Three representatives of
structures are shown for each cluster.
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with available methods. SIFt can serve as a postdocking
molecular organizer and filter, enabling potentially
millions of docking poses to be easily reorganized based
on their overall binding interaction patterns. Currently,
our implementation of the method has allowed us to
process and analyze 10 000 docking poses within 4 h
using an 800 MHz Pentium III CPU with 1 GB RAM
running Linux. This increases 8-fold if we do not
compute hydrogen-bonding interactions with HBPLUS.

Because the process is highly parallelizable, it could
benefit from high-performance computing approaches
such as grid computing systems. The linear binary
strings generated by SIFt are a simple and highly
compact representation of information, which enables
us to potentially store and process large numbers of
docking results more efficiently using the form of their
interaction patterns.

The fingerprint representation of binding interactions
makes them amenable to computational approaches
that are commonly applied in the analysis of chemical
libraries such as clustering analysis for diversity and
similarity selection and also key-based searching for
database mining. We are currently exploring how to
combine chemical diversity-based approaches with the
diversity analysis of binding site interactions to explore
how both properties relate to each other during a virtual
screening experiment (Deng, Z.; Chuaqui, C. Unpub-
lished results).

During lead discovery and lead optimization pro-
cesses, previously acquired knowledge about how the
ligand interacts with the target protein can be used to
guide the design and selection of lead compounds for
subsequent investigation and refinement. In fact, the
potential to quickly compute binding site fingerprints
and the low storage requirements makes it possible for
a SIFt-based approach to be used to organize and
facilitate analysis of the protein databank of X-ray and
NMR protein-small molecule complexes. This could
serve as a valuable knowledge base of potential desir-
able interactions within protein families (e.g., protein
kinases, aspartyl proteases) that could be used to filter
virtual screening results.

Our results highlight the limitations of using scoring
function information alone to prioritize the results from
a database search. We believe that using both binding
interaction constraints and also energy-based con-
straints are crucial for assigning confidence to the
results of a virtual screening experiment. We envision
that in the future, the results from SIFt applied to
organize X-ray information will be useful in the building
of target specific scoring functions that will include both
energy-based terms as well as terms that are tailored
to the binding site of interest (Deng, Z. Unpublished
results).

Our current implementation of SIFt uses seven bits
for each binding site residue, representing seven dif-
ferent types of interactions. Although such an imple-
mentation has been shown to be able to successfully
organize, analyze, and mine a large structural library
in a meaningful way, a 7 bit long binary string obviously
does not represent all of the binding interactions occur-
ring at a particular residue. The richness of information
can be improved by incorporating more bits representing
other types of binding interactions, using subresidue
portions instead of the whole residue as the basic unit,
taking solvent molecules into consideration, or substi-
tuting the binary bits with scaled numerical data that
reflect the strength and energetics of the interactions.
Such an enriched SIFt provides a “higher resolution”
picture of the complex. On the other hand, in situations
where computational speed is a critical issue, we may
construct “lower resolution” SIFts using fewer bits. As
a test experiment, we generated SIFts that were merely

Figure 4. Comparison of database enrichment using SIFt
with ChemScore (a) and PMF score (b). Sixteen known p38
inhibitors were diluted in 1000 diverse compounds. The best
Tanimoto coefficient (as compared to the crystal structure
1a9u) among 30 docking poses of a compound is plotted against
the best ChemScore or PMF score of the same molecule. The
red dots represent the 16 known inhibitors, and the green dots
represent the 1000 random compounds. The blue-dotted lines
indicate the corresponding cutoff scores used to filter the
docking poses in order to recover 14 out of 16 known inhibitor
(87.5% recovery rate).

Table 1. Comparison of the Database Enrichment
Performances of SIFt with ChemScore and PMF Score

filtering method EFa

PMF Score 2.0
ChemScore 5.4
SIFt 37.0
SIFt + ChemScore 42.3

a EF is defined as: EF ) (hitssampled/Nsampled)/(hitstotal/Ntotal),
where hitssampled is the number of known inhibitors recovered from
the sampled fraction of Nsampled poses and hitstotal is the number
of known inhibitors present in the whole library of Ntotal com-
pounds.15 Here, each EF was calculated based on the ability of
recovering 14 out of 16 known p38 inhibitors spiked into a random
library of 1000 compounds.
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comprised of the contact bits, and interestingly, they
were able to produce clustering results comparable to
that given by 7 bit SIFts (data not shown). Simpler
fingerprints give faster performance at the expense of
richness of information, and it is especially useful for
initial screening of a large structural library, where
performance and efficiency are the primary issues. On
the other hand, the use of longer fingerprints provides
more information at the expense of performance, and
it is more useful for detailed structural analysis such
as comparing a group of closely related crystal struc-
tures. Choosing the proper “resolution” of SIFt is a
matter of finding a proper balance between these two
competing effects. In addition, we currently treat all
seven types of binding bits equally, and consequently,
different types of interactions contribute to the final
similarity score equally. It is possible to tailor them in
a different way by weighting particular types of interac-
tion more heavily than others.

In summary, the SIFt method facilitates and inte-
grates several desirable functionalities including struc-
tural data visualization, organization, analysis, and
mining, making it an attractive method for analyzing
and profiling 3D binding interactions. We envision that
SIFt-based methods will be extended to other binary
complex systems involving a target molecule and a
ligand molecule, including protein-protein interactions,
nucleic acid-small molecule interaction, and nucleic
acid-protein interactions.
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